Properties

Label 2.5e2_13_17.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 13 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5525= 5^{2} \cdot 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 6 x^{6} - 79 x^{5} + 138 x^{4} - 187 x^{3} + 1749 x^{2} - 3322 x + 2396 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.13_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 150\cdot 157 + 138\cdot 157^{2} + 115\cdot 157^{3} + 153\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 9\cdot 157 + 38\cdot 157^{2} + 97\cdot 157^{3} + 115\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 54\cdot 157 + 64\cdot 157^{2} + 147\cdot 157^{3} + 13\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 126\cdot 157 + 2\cdot 157^{2} + 33\cdot 157^{3} + 93\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 120\cdot 157 + 110\cdot 157^{2} + 156\cdot 157^{3} + 25\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 86 + 50\cdot 157 + 7\cdot 157^{2} + 37\cdot 157^{3} + 86\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 11\cdot 157 + 24\cdot 157^{2} + 89\cdot 157^{3} + 88\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 140 + 105\cdot 157 + 84\cdot 157^{2} + 108\cdot 157^{3} + 50\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.