Properties

Label 2.5e2_139.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 139 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3475= 5^{2} \cdot 139 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 21 x^{5} - 9 x^{4} + 5 x^{3} + 10 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 32\cdot 251 + 89\cdot 251^{2} + 123\cdot 251^{3} + 56\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 + 68\cdot 251 + 139\cdot 251^{2} + 112\cdot 251^{3} + 146\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 69 + 51\cdot 251 + 18\cdot 251^{2} + 5\cdot 251^{3} + 31\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 + 17\cdot 251 + 109\cdot 251^{2} + 52\cdot 251^{3} + 31\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 102 + 119\cdot 251 + 225\cdot 251^{2} + 179\cdot 251^{3} + 101\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 108 + 222\cdot 251 + 149\cdot 251^{2} + 98\cdot 251^{3} + 129\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 152 + 39\cdot 251 + 190\cdot 251^{2} + 30\cdot 251^{3} + 87\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 165 + 202\cdot 251 + 82\cdot 251^{2} + 150\cdot 251^{3} + 169\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,7)(6,8)$
$(1,6,8,5)(2,3,7,4)$
$(1,4,8,3)(2,6,7,5)$
$(1,8)(2,7)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $-2$ $-2$
$4$ $2$ $(1,5)(2,7)(6,8)$ $0$ $0$
$2$ $4$ $(1,6,8,5)(2,3,7,4)$ $0$ $0$
$4$ $4$ $(1,4,8,3)(2,6,7,5)$ $0$ $0$
$2$ $8$ $(1,4,6,2,8,3,5,7)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,6,7,8,4,5,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.