Properties

Label 2.5e2_131.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 131 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3275= 5^{2} \cdot 131 $
Artin number field: Splitting field of $f= x^{8} + 19 x^{6} + 496 x^{4} + 2299 x^{2} + 14641 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 18\cdot 59 + 25\cdot 59^{2} + 20\cdot 59^{3} + 4\cdot 59^{4} + 29\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 + 25\cdot 59 + 58\cdot 59^{2} + 7\cdot 59^{3} + 17\cdot 59^{4} + 9\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 9\cdot 59 + 7\cdot 59^{2} + 24\cdot 59^{3} + 32\cdot 59^{4} + 18\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 19 + 41\cdot 59 + 24\cdot 59^{2} + 25\cdot 59^{3} + 9\cdot 59^{4} + 42\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 40 + 17\cdot 59 + 34\cdot 59^{2} + 33\cdot 59^{3} + 49\cdot 59^{4} + 16\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 46 + 49\cdot 59 + 51\cdot 59^{2} + 34\cdot 59^{3} + 26\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 51 + 33\cdot 59 + 51\cdot 59^{3} + 41\cdot 59^{4} + 49\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 53 + 40\cdot 59 + 33\cdot 59^{2} + 38\cdot 59^{3} + 54\cdot 59^{4} + 29\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.