Properties

Label 2.5e2_127.24t22.4c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 5^{2} \cdot 127 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3175= 5^{2} \cdot 127 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 16 x^{5} + 18 x^{4} - 14 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.127.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 13 + \left(14 a + 7\right)\cdot 23 + \left(5 a + 13\right)\cdot 23^{2} + \left(8 a + 17\right)\cdot 23^{3} + \left(5 a + 21\right)\cdot 23^{4} + \left(14 a + 22\right)\cdot 23^{5} + \left(14 a + 3\right)\cdot 23^{6} + \left(14 a + 4\right)\cdot 23^{7} + \left(8 a + 10\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 1 + \left(12 a + 13\right)\cdot 23 + \left(2 a + 21\right)\cdot 23^{2} + \left(5 a + 9\right)\cdot 23^{3} + \left(14 a + 16\right)\cdot 23^{4} + \left(3 a + 12\right)\cdot 23^{5} + \left(6 a + 20\right)\cdot 23^{6} + \left(16 a + 2\right)\cdot 23^{7} + \left(2 a + 21\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ a + 11 + \left(8 a + 15\right)\cdot 23 + \left(17 a + 9\right)\cdot 23^{2} + \left(14 a + 5\right)\cdot 23^{3} + \left(17 a + 1\right)\cdot 23^{4} + 8 a\cdot 23^{5} + \left(8 a + 19\right)\cdot 23^{6} + \left(8 a + 18\right)\cdot 23^{7} + \left(14 a + 12\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 17 a + \left(10 a + 10\right)\cdot 23 + \left(20 a + 1\right)\cdot 23^{2} + \left(17 a + 13\right)\cdot 23^{3} + \left(8 a + 6\right)\cdot 23^{4} + \left(19 a + 10\right)\cdot 23^{5} + \left(16 a + 2\right)\cdot 23^{6} + \left(6 a + 20\right)\cdot 23^{7} + \left(20 a + 1\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 11 + \left(12 a + 14\right)\cdot 23 + \left(2 a + 8\right)\cdot 23^{2} + \left(5 a + 5\right)\cdot 23^{3} + \left(14 a + 6\right)\cdot 23^{4} + \left(3 a + 17\right)\cdot 23^{5} + \left(6 a + 16\right)\cdot 23^{6} + \left(16 a + 16\right)\cdot 23^{7} + \left(2 a + 12\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 13 + \left(10 a + 8\right)\cdot 23 + \left(20 a + 14\right)\cdot 23^{2} + \left(17 a + 17\right)\cdot 23^{3} + \left(8 a + 16\right)\cdot 23^{4} + \left(19 a + 5\right)\cdot 23^{5} + \left(16 a + 6\right)\cdot 23^{6} + \left(6 a + 6\right)\cdot 23^{7} + \left(20 a + 10\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 9 + 7\cdot 23 + 13\cdot 23^{2} + 14\cdot 23^{3} + 6\cdot 23^{4} + 4\cdot 23^{5} + 20\cdot 23^{6} + 11\cdot 23^{7} +O\left(23^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 15 + 15\cdot 23 + 9\cdot 23^{2} + 8\cdot 23^{3} + 16\cdot 23^{4} + 18\cdot 23^{5} + 2\cdot 23^{6} + 11\cdot 23^{7} + 22\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,7)(2,6,4,5)$
$(1,3)(2,4)(5,6)(7,8)$
$(1,2,8)(3,4,7)$
$(1,6,3,5)(2,7,4,8)$
$(1,3)(2,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,6)(7,8)$$-2$
$12$$2$$(1,3)(2,7)(4,8)$$0$
$8$$3$$(1,2,8)(3,4,7)$$-1$
$6$$4$$(1,6,3,5)(2,7,4,8)$$0$
$8$$6$$(1,4,8,3,2,7)(5,6)$$1$
$6$$8$$(1,7,6,4,3,8,5,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,8,6,2,3,7,5,4)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.