Properties

Label 2.5e2_11e2_31.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 11^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$93775= 5^{2} \cdot 11^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 6 x^{2} - 216 x + 621 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 46 + 39\cdot 101 + 5\cdot 101^{2} + 24\cdot 101^{3} + 72\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 83 + 34\cdot 101 + 14\cdot 101^{2} + 64\cdot 101^{3} + 71\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 85 + 54\cdot 101 + 60\cdot 101^{2} + 92\cdot 101^{3} + 69\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 + 72\cdot 101 + 20\cdot 101^{2} + 21\cdot 101^{3} + 89\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.