Properties

Label 2.5e2_11e2_19.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 11^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$57475= 5^{2} \cdot 11^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 29 x^{2} - 116 x + 916 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 28\cdot 61 + 53\cdot 61^{2} + 41\cdot 61^{3} + 30\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 18\cdot 61 + 16\cdot 61^{2} + 31\cdot 61^{3} + 49\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 26\cdot 61 + 39\cdot 61^{2} + 61^{3} + 38\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 49\cdot 61 + 12\cdot 61^{2} + 47\cdot 61^{3} + 3\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.