Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 45\cdot 71 + 20\cdot 71^{2} + 41\cdot 71^{3} + 39\cdot 71^{4} + 39\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 41\cdot 71 + 48\cdot 71^{2} + 50\cdot 71^{3} + 2\cdot 71^{4} + 46\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 + 34\cdot 71 + 44\cdot 71^{2} + 59\cdot 71^{3} + 44\cdot 71^{4} + 21\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 33 + 11\cdot 71 + 40\cdot 71^{2} + 12\cdot 71^{3} + 31\cdot 71^{4} + 41\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 35 + 42\cdot 71 + 25\cdot 71^{2} + 15\cdot 71^{3} + 18\cdot 71^{4} + 9\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 36 + 16\cdot 71 + 5\cdot 71^{2} + 53\cdot 71^{3} + 39\cdot 71^{4} + 31\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 62 + 43\cdot 71 + 58\cdot 71^{2} + 42\cdot 71^{3} + 29\cdot 71^{4} + 54\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 63 + 48\cdot 71 + 40\cdot 71^{2} + 8\cdot 71^{3} + 7\cdot 71^{4} + 40\cdot 71^{5} +O\left(71^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,8)(4,5)$ |
| $(1,2)(3,8)(4,5)(6,7)$ |
| $(1,4,2,5)(3,7,8,6)$ |
| $(3,4,8,5)$ |
| $(1,7,2,6)(3,5,8,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,8)(4,5)(6,7)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(3,8)(4,5)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(2,3)(4,6)(5,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,6,2,7)(3,5,8,4)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,7,2,6)(3,4,8,5)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,7,2,6)(3,5,8,4)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(3,4,8,5)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(3,5,8,4)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,2)(3,5,8,4)(6,7)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,2)(3,4,8,5)(6,7)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $4$ |
$4$ |
$(1,4,2,5)(3,7,8,6)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,8,6,4,2,3,7,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,8,2,5,6,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.