Properties

Label 2.5e2_11_41.4t3.5
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 11 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11275= 5^{2} \cdot 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} + 1690 x^{4} - 4514 x^{3} + 4513 x^{2} - 1692 x + 318096 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 4 + 3\cdot 31 + 12\cdot 31^{2} + 23\cdot 31^{3} + 26\cdot 31^{4} + 5\cdot 31^{5} + 22\cdot 31^{6} + 13\cdot 31^{7} + 24\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 5 + 11\cdot 31 + 6\cdot 31^{2} + 13\cdot 31^{3} + 12\cdot 31^{4} + 24\cdot 31^{5} + 18\cdot 31^{6} + 30\cdot 31^{7} + 4\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 8 + 26\cdot 31 + 5\cdot 31^{2} + 18\cdot 31^{3} + 17\cdot 31^{4} + 15\cdot 31^{5} + 22\cdot 31^{6} + 31^{7} + 3\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 15 + 21\cdot 31 + 6\cdot 31^{2} + 7\cdot 31^{3} + 5\cdot 31^{4} + 16\cdot 31^{5} + 29\cdot 31^{6} + 15\cdot 31^{7} + 29\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 18 + 30\cdot 31 + 25\cdot 31^{2} + 18\cdot 31^{3} + 13\cdot 31^{4} + 17\cdot 31^{5} + 27\cdot 31^{6} + 23\cdot 31^{7} + 20\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 21 + 13\cdot 31 + 11\cdot 31^{2} + 2\cdot 31^{3} + 3\cdot 31^{4} + 17\cdot 31^{5} + 22\cdot 31^{6} + 31^{7} + 5\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 26 + 6\cdot 31 + 17\cdot 31^{2} + 12\cdot 31^{3} + 16\cdot 31^{4} + 22\cdot 31^{5} + 13\cdot 31^{6} + 8\cdot 31^{7} + 18\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 29 + 10\cdot 31 + 7\cdot 31^{2} + 28\cdot 31^{3} + 28\cdot 31^{4} + 4\cdot 31^{5} + 29\cdot 31^{6} + 27\cdot 31^{7} + 17\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,4)(5,6)(7,8)$
$(1,5,4,7)(2,6,3,8)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,7)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$2$ $4$ $(1,5,4,7)(2,6,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.