Properties

Label 2.5e2_11.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$275= 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{6} + 16 x^{4} - x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 6\cdot 71 + 37\cdot 71^{2} + 28\cdot 71^{3} + 22\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 47\cdot 71 + 32\cdot 71^{2} + 46\cdot 71^{3} + 8\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 13\cdot 71 + 45\cdot 71^{2} + 64\cdot 71^{3} + 25\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 37\cdot 71 + 3\cdot 71^{2} + 45\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 + 33\cdot 71 + 67\cdot 71^{2} + 25\cdot 71^{3} + 29\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 57\cdot 71 + 25\cdot 71^{2} + 6\cdot 71^{3} + 45\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 59 + 23\cdot 71 + 38\cdot 71^{2} + 24\cdot 71^{3} + 62\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 64\cdot 71 + 33\cdot 71^{2} + 42\cdot 71^{3} + 48\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,4)(2,5,8,6)$
$(1,2)(3,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,7,4)(2,5,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.