Properties

Label 2.5e2_107.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 5^{2} \cdot 107 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2675= 5^{2} \cdot 107 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 3 x^{7} + 9 x^{6} - 6 x^{5} + 15 x^{4} - 18 x^{3} - 96 x^{2} + 56 x - 16 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.107.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 7 a + 11 + \left(9 a^{2} + 23 a + 24\right)\cdot 29 + \left(27 a^{2} + 11 a + 11\right)\cdot 29^{2} + \left(8 a^{2} + 27 a + 15\right)\cdot 29^{3} + \left(23 a^{2} + 26 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 14 a + 25 + \left(26 a^{2} + 2 a + 16\right)\cdot 29 + \left(14 a^{2} + 27 a + 15\right)\cdot 29^{2} + \left(11 a^{2} + 5 a + 11\right)\cdot 29^{3} + \left(2 a^{2} + 18 a + 19\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{2} + 5 a + 9 + \left(15 a^{2} + 22 a + 23\right)\cdot 29 + \left(17 a^{2} + 17 a + 27\right)\cdot 29^{2} + \left(17 a^{2} + 18 a + 26\right)\cdot 29^{3} + \left(25 a^{2} + 26 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 24 a + 18 + \left(24 a^{2} + 24 a + 4\right)\cdot 29 + \left(23 a^{2} + 24 a + 8\right)\cdot 29^{2} + \left(22 a^{2} + 28 a + 7\right)\cdot 29^{3} + \left(20 a^{2} + 12 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 17 a + 26 + \left(4 a^{2} + 12 a + 17\right)\cdot 29 + \left(13 a^{2} + 28 a + 2\right)\cdot 29^{2} + \left(2 a^{2} + 11 a + 26\right)\cdot 29^{3} + \left(9 a^{2} + 4 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 4 a + 5 + \left(20 a^{2} + 4 a + 13\right)\cdot 29 + \left(a^{2} + 12 a + 21\right)\cdot 29^{2} + \left(23 a^{2} + 5 a + 11\right)\cdot 29^{3} + \left(17 a^{2} + 3 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 18 a^{2} + 28 a + 18 + \left(3 a^{2} + 28 a + 10\right)\cdot 29 + \left(13 a^{2} + a + 17\right)\cdot 29^{2} + \left(19 a^{2} + 2 a + 16\right)\cdot 29^{3} + \left(23 a^{2} + 23 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + 26 a + 17 + \left(5 a^{2} + 24 a + 22\right)\cdot 29 + \left(14 a^{2} + 14 a + 18\right)\cdot 29^{2} + \left(15 a^{2} + 21 a + 1\right)\cdot 29^{3} + \left(16 a^{2} + 2 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 21 a^{2} + 20 a + 20 + \left(7 a^{2} + a + 11\right)\cdot 29 + \left(19 a^{2} + 6 a + 21\right)\cdot 29^{2} + \left(23 a^{2} + 23 a + 27\right)\cdot 29^{3} + \left(5 a^{2} + 26 a + 23\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6,9,3,7,2,5,8,4)$
$(1,2)(3,9)(4,5)(6,7)$
$(1,3,5)(2,4,9)(6,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,2)(3,9)(4,5)(6,7)$$0$
$2$$3$$(1,3,5)(2,4,9)(6,7,8)$$-1$
$2$$9$$(1,6,9,3,7,2,5,8,4)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,9,7,5,4,6,3,2,8)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,7,4,3,8,9,5,6,2)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.