Properties

Label 2.5e2_101.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 101 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$2525= 5^{2} \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 8 x^{6} + 35 x^{5} - 19 x^{4} - 45 x^{3} + 53 x^{2} - 14 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.101.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 9\cdot 71 + 35\cdot 71^{2} + 25\cdot 71^{3} + 19\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 8\cdot 71 + 8\cdot 71^{2} + 38\cdot 71^{3} + 68\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 19\cdot 71 + 20\cdot 71^{2} + 20\cdot 71^{3} + 3\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 + 55\cdot 71 + 60\cdot 71^{2} + 21\cdot 71^{3} + 48\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 35\cdot 71 + 33\cdot 71^{2} + 32\cdot 71^{3} + 15\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 16\cdot 71 + 70\cdot 71^{2} + 54\cdot 71^{3} + 14\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 52 + 40\cdot 71 + 41\cdot 71^{2} + 35\cdot 71^{3} + 22\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 60 + 27\cdot 71 + 14\cdot 71^{2} + 55\cdot 71^{3} + 20\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,7)(5,6)$
$(1,5)(2,8)(4,6)$
$(1,6,4,5)(2,3,8,7)$
$(1,3,4,7)(2,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,7)(5,6)$$-2$
$4$$2$$(1,5)(2,8)(4,6)$$0$
$2$$4$$(1,6,4,5)(2,3,8,7)$$0$
$4$$4$$(1,3,4,7)(2,5,8,6)$$0$
$2$$8$$(1,3,6,8,4,7,5,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,7,6,2,4,3,5,8)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.