Basic invariants
| Dimension: | $2$ |
| Group: | $D_4$ |
| Conductor: | \(2525\)\(\medspace = 5^{2} \cdot 101 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin field: | Galois closure of 8.0.1625943765625.5 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | even |
| Determinant: | 1.101.2t1.a.a |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(\sqrt{5}, \sqrt{101})\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} - 9x^{6} + 136x^{4} - 1089x^{2} + 14641 \)
|
The roots of $f$ are computed in $\Q_{ 19 }$ to precision 7.
Roots:
| $r_{ 1 }$ | $=$ |
\( 1 + 14\cdot 19 + 2\cdot 19^{2} + 14\cdot 19^{3} + 17\cdot 19^{4} + 12\cdot 19^{5} + 2\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 2 }$ | $=$ |
\( 2 + 10\cdot 19 + 14\cdot 19^{2} + 8\cdot 19^{3} + 5\cdot 19^{5} + 5\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 3 }$ | $=$ |
\( 4 + 8\cdot 19 + 16\cdot 19^{2} + 5\cdot 19^{3} + 3\cdot 19^{4} + 9\cdot 19^{5} +O(19^{7})\)
|
| $r_{ 4 }$ | $=$ |
\( 8 + 19 + 2\cdot 19^{2} + 8\cdot 19^{3} + 11\cdot 19^{4} + 16\cdot 19^{5} + 18\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 5 }$ | $=$ |
\( 11 + 17\cdot 19 + 16\cdot 19^{2} + 10\cdot 19^{3} + 7\cdot 19^{4} + 2\cdot 19^{5} +O(19^{7})\)
|
| $r_{ 6 }$ | $=$ |
\( 15 + 10\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 15\cdot 19^{4} + 9\cdot 19^{5} + 18\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 7 }$ | $=$ |
\( 17 + 8\cdot 19 + 4\cdot 19^{2} + 10\cdot 19^{3} + 18\cdot 19^{4} + 13\cdot 19^{5} + 13\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 8 }$ | $=$ |
\( 18 + 4\cdot 19 + 16\cdot 19^{2} + 4\cdot 19^{3} + 19^{4} + 6\cdot 19^{5} + 16\cdot 19^{6} +O(19^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-2$ | ✓ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ | |
| $2$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ | $0$ | |
| $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ | $0$ |