Properties

Label 2.5e2_101.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 101 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2525= 5^{2} \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 9 x^{6} + 136 x^{4} - 1089 x^{2} + 14641 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.101.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 14\cdot 19 + 2\cdot 19^{2} + 14\cdot 19^{3} + 17\cdot 19^{4} + 12\cdot 19^{5} + 2\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 + 10\cdot 19 + 14\cdot 19^{2} + 8\cdot 19^{3} + 5\cdot 19^{5} + 5\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 + 8\cdot 19 + 16\cdot 19^{2} + 5\cdot 19^{3} + 3\cdot 19^{4} + 9\cdot 19^{5} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 + 19 + 2\cdot 19^{2} + 8\cdot 19^{3} + 11\cdot 19^{4} + 16\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 11 + 17\cdot 19 + 16\cdot 19^{2} + 10\cdot 19^{3} + 7\cdot 19^{4} + 2\cdot 19^{5} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 + 10\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 15\cdot 19^{4} + 9\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 17 + 8\cdot 19 + 4\cdot 19^{2} + 10\cdot 19^{3} + 18\cdot 19^{4} + 13\cdot 19^{5} + 13\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 18 + 4\cdot 19 + 16\cdot 19^{2} + 4\cdot 19^{3} + 19^{4} + 6\cdot 19^{5} + 16\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7)(2,8,6,4)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,5,7)(2,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.