Properties

Label 2.2525.4t3.c.a
Dimension $2$
Group $D_4$
Conductor $2525$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(2525\)\(\medspace = 5^{2} \cdot 101 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.1625943765625.5
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.101.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{101})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 9x^{6} + 136x^{4} - 1089x^{2} + 14641 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 7.

Roots:
$r_{ 1 }$ $=$ \( 1 + 14\cdot 19 + 2\cdot 19^{2} + 14\cdot 19^{3} + 17\cdot 19^{4} + 12\cdot 19^{5} + 2\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 10\cdot 19 + 14\cdot 19^{2} + 8\cdot 19^{3} + 5\cdot 19^{5} + 5\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 8\cdot 19 + 16\cdot 19^{2} + 5\cdot 19^{3} + 3\cdot 19^{4} + 9\cdot 19^{5} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 8 + 19 + 2\cdot 19^{2} + 8\cdot 19^{3} + 11\cdot 19^{4} + 16\cdot 19^{5} + 18\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 17\cdot 19 + 16\cdot 19^{2} + 10\cdot 19^{3} + 7\cdot 19^{4} + 2\cdot 19^{5} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 + 10\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 15\cdot 19^{4} + 9\cdot 19^{5} + 18\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 17 + 8\cdot 19 + 4\cdot 19^{2} + 10\cdot 19^{3} + 18\cdot 19^{4} + 13\cdot 19^{5} + 13\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 18 + 4\cdot 19 + 16\cdot 19^{2} + 4\cdot 19^{3} + 19^{4} + 6\cdot 19^{5} + 16\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7)(2,8,6,4)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,5,7)(2,8,6,4)$$0$