Properties

Label 2.5_929.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 929 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4645= 5 \cdot 929 $
Artin number field: Splitting field of $f= x^{8} + 56 x^{6} + 864 x^{4} - 2405 x^{2} + 1600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 39\cdot 61 + 24\cdot 61^{2} + 56\cdot 61^{3} + 33\cdot 61^{4} + 24\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 34\cdot 61 + 40\cdot 61^{2} + 39\cdot 61^{3} + 59\cdot 61^{4} + 4\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 + 30\cdot 61 + 10\cdot 61^{2} + 30\cdot 61^{3} + 28\cdot 61^{4} + 32\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 25 + 18\cdot 61 + 46\cdot 61^{2} + 56\cdot 61^{3} + 60\cdot 61^{4} + 59\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 36 + 42\cdot 61 + 14\cdot 61^{2} + 4\cdot 61^{3} + 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 39 + 30\cdot 61 + 50\cdot 61^{2} + 30\cdot 61^{3} + 32\cdot 61^{4} + 28\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 51 + 26\cdot 61 + 20\cdot 61^{2} + 21\cdot 61^{3} + 61^{4} + 56\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 57 + 21\cdot 61 + 36\cdot 61^{2} + 4\cdot 61^{3} + 27\cdot 61^{4} + 36\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,7,6)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $-2$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,4)(5,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.