Properties

Label 2.5_89.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 89 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$445= 5 \cdot 89 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 22 x^{6} + 46 x^{5} + 82 x^{4} - 126 x^{3} - 55 x^{2} + 76 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 71 + 39\cdot 71^{2} + 54\cdot 71^{3} + 67\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 41\cdot 71 + 16\cdot 71^{2} + 8\cdot 71^{3} + 30\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 55\cdot 71 + 67\cdot 71^{2} + 69\cdot 71^{3} + 13\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 7\cdot 71 + 45\cdot 71^{2} + 23\cdot 71^{3} + 47\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 + 45\cdot 71 + 35\cdot 71^{2} + 9\cdot 71^{3} + 27\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 + 64\cdot 71 + 64\cdot 71^{2} + 41\cdot 71^{3} + 2\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 45 + 52\cdot 71 + 63\cdot 71^{2} + 21\cdot 71^{3} + 24\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 54 + 22\cdot 71^{2} + 54\cdot 71^{3} + 70\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,8)(2,7,3,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,7)(2,5)(3,8)(4,6)$ $0$
$2$ $4$ $(1,5,4,8)(2,7,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.