Properties

Label 2.5_839.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 839 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4195= 5 \cdot 839 $
Artin number field: Splitting field of $f= x^{8} + 12 x^{6} + 516 x^{4} + 7075 x^{2} + 57600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 64 + 189\cdot 211 + 72\cdot 211^{2} + 166\cdot 211^{3} + 177\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 35\cdot 211 + 168\cdot 211^{2} + 177\cdot 211^{3} + 193\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 94\cdot 211 + 75\cdot 211^{2} + 65\cdot 211^{3} + 115\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 + 151\cdot 211 + 170\cdot 211^{2} + 76\cdot 211^{3} + 131\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 129 + 59\cdot 211 + 40\cdot 211^{2} + 134\cdot 211^{3} + 79\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 116\cdot 211 + 135\cdot 211^{2} + 145\cdot 211^{3} + 95\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 142 + 175\cdot 211 + 42\cdot 211^{2} + 33\cdot 211^{3} + 17\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 147 + 21\cdot 211 + 138\cdot 211^{2} + 44\cdot 211^{3} + 33\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $4$ $(1,7,4,6)(2,5,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.