Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 97 + 124\cdot 211 + 56\cdot 211^{2} + 150\cdot 211^{3} + 128\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 102 + 181\cdot 211 + 151\cdot 211^{2} + 161\cdot 211^{3} + 144\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 110 + 29\cdot 211 + 59\cdot 211^{2} + 49\cdot 211^{3} + 66\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 115 + 86\cdot 211 + 154\cdot 211^{2} + 60\cdot 211^{3} + 82\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.