Properties

Label 2.5_821.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 821 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4105= 5 \cdot 821 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 60 x^{6} - 166 x^{5} + 991 x^{4} - 1710 x^{3} - 604 x^{2} + 1432 x + 1424 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 9\cdot 79 + 35\cdot 79^{2} + 7\cdot 79^{3} + 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 57\cdot 79 + 19\cdot 79^{2} + 27\cdot 79^{3} + 25\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 60\cdot 79 + 11\cdot 79^{2} + 6\cdot 79^{3} + 61\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 47\cdot 79 + 66\cdot 79^{2} + 40\cdot 79^{3} + 8\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 + 31\cdot 79 + 12\cdot 79^{2} + 38\cdot 79^{3} + 70\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 + 18\cdot 79 + 67\cdot 79^{2} + 72\cdot 79^{3} + 17\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 72 + 21\cdot 79 + 59\cdot 79^{2} + 51\cdot 79^{3} + 53\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 74 + 69\cdot 79 + 43\cdot 79^{2} + 71\cdot 79^{3} + 77\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.