Properties

Label 2.5_7e2_11.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 7^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2695= 5 \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - x^{6} - 15 x^{5} + 74 x^{4} - 21 x^{3} + 35 x^{2} - 414 x + 499 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 31\cdot 71 + 9\cdot 71^{2} + 26\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 44\cdot 71 + 67\cdot 71^{2} + 40\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 53\cdot 71 + 54\cdot 71^{2} + 9\cdot 71^{3} + 57\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 8\cdot 71 + 8\cdot 71^{2} + 40\cdot 71^{3} + 11\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 + 40\cdot 71 + 2\cdot 71^{2} + 66\cdot 71^{3} + 2\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 2\cdot 71 + 22\cdot 71^{2} + 8\cdot 71^{3} + 7\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 62\cdot 71 + 61\cdot 71^{2} + 32\cdot 71^{3} + 62\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 56 + 40\cdot 71 + 57\cdot 71^{2} + 28\cdot 71^{3} + 56\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,6)(5,7)$
$(1,2,7,4)(3,6,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $-2$
$2$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,8)(2,5)(3,4)(6,7)$ $0$
$2$ $4$ $(1,2,7,4)(3,6,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.