Properties

Label 2.5_7_17.8t11.1c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 5 \cdot 7 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$595= 5 \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 5 x^{6} - 12 x^{5} + 20 x^{4} - 20 x^{3} + 23 x^{2} - 21 x + 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.5_7_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 26\cdot 179 + 87\cdot 179^{2} + 78\cdot 179^{3} + 94\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 171\cdot 179 + 37\cdot 179^{2} + 70\cdot 179^{3} + 166\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 94 + 13\cdot 179 + 16\cdot 179^{2} + 143\cdot 179^{3} + 67\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 + 136\cdot 179 + 74\cdot 179^{2} + 176\cdot 179^{3} + 26\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 138 + 178\cdot 179 + 50\cdot 179^{2} + 83\cdot 179^{3} + 89\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 144 + 124\cdot 179 + 101\cdot 179^{2} + 122\cdot 179^{3} + 45\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 152 + 42\cdot 179 + 43\cdot 179^{2} + 12\cdot 179^{3} + 47\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 177 + 21\cdot 179 + 125\cdot 179^{2} + 29\cdot 179^{3} + 178\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,5,7)$
$(1,4,8,7)(2,6,5,3)$
$(1,8)(2,5)(3,6)(4,7)$
$(1,4,8,7)(2,3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,6)(4,7)$$-2$
$2$$2$$(2,5)(3,6)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,5)(2,8)(3,7)(4,6)$$0$
$1$$4$$(1,4,8,7)(2,3,5,6)$$-2 \zeta_{4}$
$1$$4$$(1,7,8,4)(2,6,5,3)$$2 \zeta_{4}$
$2$$4$$(1,4,8,7)(2,6,5,3)$$0$
$2$$4$$(1,3,8,6)(2,4,5,7)$$0$
$2$$4$$(1,5,8,2)(3,4,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.