Properties

Label 2.5_7_13.8t11.2c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 5 \cdot 7 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$455= 5 \cdot 7 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 10 x^{6} - 15 x^{5} + 23 x^{4} - 15 x^{3} + 10 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.5_7_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 2\cdot 29 + 19\cdot 29^{2} + 11\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 2\cdot 29 + 22\cdot 29^{2} + 18\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 20\cdot 29^{2} + 27\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 4\cdot 29 + 25\cdot 29^{2} + 8\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 + 26\cdot 29 + 18\cdot 29^{2} + 17\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 + 6\cdot 29 + 22\cdot 29^{2} + 10\cdot 29^{3} + 23\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 26 + 13\cdot 29 + 15\cdot 29^{2} + 15\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 27 + 2\cdot 29 + 2\cdot 29^{2} + 5\cdot 29^{3} + 15\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,4)(3,5)(6,8)$
$(1,3,6,4)(2,7,5,8)$
$(2,5)(7,8)$
$(1,6)(2,5)(3,4)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)(7,8)$$-2$
$2$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$2$$2$$(2,5)(7,8)$$0$
$2$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$1$$4$$(1,3,6,4)(2,7,5,8)$$2 \zeta_{4}$
$1$$4$$(1,4,6,3)(2,8,5,7)$$-2 \zeta_{4}$
$2$$4$$(1,5,6,2)(3,8,4,7)$$0$
$2$$4$$(1,8,6,7)(2,4,5,3)$$0$
$2$$4$$(1,3,6,4)(2,8,5,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.