Properties

Label 2.5_7_11.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 5 \cdot 7 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$385= 5 \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{9} + 7 x^{7} - 4 x^{6} + 14 x^{5} - 14 x^{4} + 10 x^{3} - 7 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.5_7_11.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 12 a^{2} + 6 a + 3 + \left(7 a^{2} + 10 a + 6\right)\cdot 13 + \left(7 a + 9\right)\cdot 13^{2} + \left(8 a^{2} + 6 a + 10\right)\cdot 13^{3} + \left(6 a^{2} + 6 a + 8\right)\cdot 13^{4} + \left(9 a^{2} + a + 12\right)\cdot 13^{5} + \left(8 a^{2} + 4 a + 2\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 12 a + 2 + \left(5 a^{2} + 9 a + 3\right)\cdot 13 + \left(4 a^{2} + 6 a + 10\right)\cdot 13^{2} + \left(a^{2} + 1\right)\cdot 13^{3} + 2 a\cdot 13^{4} + \left(a^{2} + 11 a + 10\right)\cdot 13^{5} + \left(4 a^{2} + 6 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 11 a + 12 + \left(8 a^{2} + 10 a + 2\right)\cdot 13 + \left(10 a + 5\right)\cdot 13^{2} + \left(2 a^{2} + a + 11\right)\cdot 13^{3} + \left(4 a^{2} + 11 a + 9\right)\cdot 13^{4} + \left(4 a^{2} + 10 a + 5\right)\cdot 13^{5} + \left(a^{2} + 2 a + 10\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 2 a + 8 + \left(6 a^{2} + 8\right)\cdot 13 + \left(10 a^{2} + 2 a + 9\right)\cdot 13^{2} + \left(7 a^{2} + 6 a + 1\right)\cdot 13^{3} + \left(3 a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(5 a^{2} + 9 a + 2\right)\cdot 13^{5} + \left(2 a^{2} + 3 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 4 a + 3 + \left(11 a^{2} + 4 a + 7\right)\cdot 13 + \left(11 a^{2} + a + 11\right)\cdot 13^{2} + \left(7 a^{2} + a + 1\right)\cdot 13^{3} + \left(4 a^{2} + 8 a + 6\right)\cdot 13^{4} + 3 a\cdot 13^{5} + \left(11 a^{2} + 5 a + 6\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 3 a + 12 + \left(11 a^{2} + 5 a + 6\right)\cdot 13 + \left(7 a^{2} + 8 a + 10\right)\cdot 13^{2} + \left(9 a^{2} + 10 a + 12\right)\cdot 13^{3} + \left(8 a^{2} + 12 a + 2\right)\cdot 13^{4} + \left(7 a^{2} + 3 a + 10\right)\cdot 13^{5} + \left(7 a^{2} + 3 a + 5\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 8 a + 10 + \left(2 a^{2} + 10 a + 2\right)\cdot 13 + \left(2 a^{2} + 3 a + 7\right)\cdot 13^{2} + \left(8 a^{2} + 4 a + 6\right)\cdot 13^{3} + \left(2 a^{2} + 12 a + 3\right)\cdot 13^{4} + \left(9 a^{2} + 6 a + 12\right)\cdot 13^{5} + \left(9 a^{2} + 6 a + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 3 a + 7 + \left(6 a^{2} + 11 a + 12\right)\cdot 13 + \left(3 a + 4\right)\cdot 13^{2} + \left(10 a^{2} + 5 a\right)\cdot 13^{3} + \left(a^{2} + 11 a + 11\right)\cdot 13^{4} + \left(3 a^{2} + 7 a + 12\right)\cdot 13^{5} + \left(6 a^{2} + 3 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 6 a^{2} + 3 a + 8 + \left(4 a^{2} + 2 a + 1\right)\cdot 13 + \left(7 a + 9\right)\cdot 13^{2} + \left(10 a^{2} + 2 a + 4\right)\cdot 13^{3} + \left(6 a^{2} + 6 a\right)\cdot 13^{4} + \left(11 a^{2} + 9 a + 11\right)\cdot 13^{5} + \left(2 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(4,7)(5,8)$
$(1,2,9,8,3,7)(4,5,6)$
$(1,5)(3,6)(4,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,8)(2,3)(7,9)$$0$
$1$$3$$(1,9,3)(2,8,7)(4,6,5)$$2 \zeta_{3}$
$1$$3$$(1,3,9)(2,7,8)(4,5,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,6,7)(2,9,5)(3,4,8)$$\zeta_{3} + 1$
$2$$3$$(1,7,6)(2,5,9)(3,8,4)$$-\zeta_{3}$
$2$$3$$(1,8,5)(2,6,3)(4,9,7)$$-1$
$3$$6$$(1,2,9,8,3,7)(4,5,6)$$0$
$3$$6$$(1,7,3,8,9,2)(4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.