Properties

Label 2.5_7_11.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 5 \cdot 7 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$385= 5 \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 3 x^{4} + 7 x^{3} + x^{2} - 6 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.5_7_11.6t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 28 + \left(11 a + 6\right)\cdot 29 + \left(19 a + 25\right)\cdot 29^{2} + \left(7 a + 1\right)\cdot 29^{3} + \left(3 a + 23\right)\cdot 29^{4} + \left(24 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 15 + 23 a\cdot 29 + \left(3 a + 20\right)\cdot 29^{2} + \left(14 a + 24\right)\cdot 29^{3} + \left(4 a + 12\right)\cdot 29^{4} + \left(6 a + 11\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 11 + \left(16 a + 25\right)\cdot 29 + \left(15 a + 13\right)\cdot 29^{2} + \left(22 a + 12\right)\cdot 29^{3} + \left(27 a + 13\right)\cdot 29^{4} + \left(17 a + 11\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 4 + \left(17 a + 3\right)\cdot 29 + \left(9 a + 24\right)\cdot 29^{2} + \left(21 a + 20\right)\cdot 29^{3} + \left(25 a + 2\right)\cdot 29^{4} + \left(4 a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 23 + \left(5 a + 12\right)\cdot 29 + \left(25 a + 15\right)\cdot 29^{2} + \left(14 a + 4\right)\cdot 29^{3} + \left(24 a + 21\right)\cdot 29^{4} + \left(22 a + 8\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 8 + \left(12 a + 9\right)\cdot 29 + \left(13 a + 17\right)\cdot 29^{2} + \left(6 a + 22\right)\cdot 29^{3} + \left(a + 13\right)\cdot 29^{4} + \left(11 a + 15\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4,3)$
$(1,3,5,4,6,2)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,5)(3,6)$$0$
$1$$3$$(1,5,6)(2,3,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,5)(2,4,3)$$2 \zeta_{3}$
$2$$3$$(2,4,3)$$\zeta_{3} + 1$
$2$$3$$(2,3,4)$$-\zeta_{3}$
$2$$3$$(1,6,5)(2,3,4)$$-1$
$3$$6$$(1,3,5,4,6,2)$$0$
$3$$6$$(1,2,6,4,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.