Properties

Label 2.5_79.8t6.1c1
Dimension 2
Group $D_{8}$
Conductor $ 5 \cdot 79 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$395= 5 \cdot 79 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - 7 x^{5} + 8 x^{4} - 11 x^{3} + 11 x^{2} - 2 x - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.5_79.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 4\cdot 101 + 5\cdot 101^{2} + 95\cdot 101^{3} + 33\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 71\cdot 101 + 97\cdot 101^{2} + 88\cdot 101^{3} + 51\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 62\cdot 101 + 31\cdot 101^{2} + 79\cdot 101^{3} + 63\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 + 77\cdot 101 + 26\cdot 101^{2} + 72\cdot 101^{3} + 3\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 46 + 5\cdot 101 + 66\cdot 101^{2} + 32\cdot 101^{3} + 93\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 53 + 87\cdot 101 + 93\cdot 101^{2} + 47\cdot 101^{3} + 19\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 89 + 101 + 44\cdot 101^{2} + 98\cdot 101^{3} + 80\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 92 + 93\cdot 101 + 38\cdot 101^{2} + 91\cdot 101^{3} + 56\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,2,4)(3,6,5,7)$
$(1,5)(2,3)(4,7)(6,8)$
$(1,2)(3,5)(4,8)(6,7)$
$(1,7,8,3,2,6,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,8)(6,7)$$-2$
$4$$2$$(1,5)(2,3)(4,7)(6,8)$$0$
$4$$2$$(1,4)(2,8)(6,7)$$0$
$2$$4$$(1,8,2,4)(3,6,5,7)$$0$
$2$$8$$(1,5,4,6,2,3,8,7)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,6,8,5,2,7,4,3)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.