Properties

Label 2.5_71.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$355= 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} + 52 x^{4} - 146 x^{3} + 145 x^{2} - 54 x + 324 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 23 + 31\cdot 89 + 12\cdot 89^{2} + 2\cdot 89^{3} + 7\cdot 89^{4} + 4\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 + 16\cdot 89 + 32\cdot 89^{2} + 27\cdot 89^{3} + 25\cdot 89^{4} + 8\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 + 69\cdot 89 + 12\cdot 89^{2} + 69\cdot 89^{3} + 16\cdot 89^{4} + 83\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 57 + 43\cdot 89 + 49\cdot 89^{2} + 70\cdot 89^{3} + 78\cdot 89^{4} + 55\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 69 + 33\cdot 89 + 14\cdot 89^{2} + 36\cdot 89^{3} + 75\cdot 89^{4} + 34\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 72 + 86\cdot 89 + 83\cdot 89^{2} + 77\cdot 89^{3} + 66\cdot 89^{4} + 20\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 82 + 81\cdot 89 + 5\cdot 89^{2} + 67\cdot 89^{3} + 63\cdot 89^{4} + 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 87 + 81\cdot 89 + 55\cdot 89^{2} + 5\cdot 89^{3} + 22\cdot 89^{4} + 58\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,7,6,8)$
$(1,2)(3,8)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$2$ $4$ $(1,3,4,5)(2,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.