Properties

Label 2.5_661.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 661 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3305= 5 \cdot 661 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 58 x^{6} - 114 x^{5} + 733 x^{4} - 662 x^{3} - 179 x^{2} + 165 x + 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 38\cdot 59 + 44\cdot 59^{2} + 52\cdot 59^{3} + 21\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 45\cdot 59 + 7\cdot 59^{2} + 47\cdot 59^{3} + 21\cdot 59^{4} + 3\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 + 16\cdot 59 + 18\cdot 59^{3} + 3\cdot 59^{4} + 25\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 + 8\cdot 59 + 18\cdot 59^{2} + 57\cdot 59^{3} + 14\cdot 59^{4} + 48\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 20 + 15\cdot 59 + 40\cdot 59^{2} + 51\cdot 59^{3} + 14\cdot 59^{4} + 11\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 + 48\cdot 59 + 32\cdot 59^{2} + 54\cdot 59^{3} + 18\cdot 59^{4} + 41\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 36 + 6\cdot 59 + 45\cdot 59^{2} + 28\cdot 59^{3} + 12\cdot 59^{4} + 49\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 57 + 57\cdot 59 + 46\cdot 59^{2} + 43\cdot 59^{3} + 9\cdot 59^{4} + 17\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,5)(6,7)$
$(1,3,5,6)(2,7,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,4)(3,6)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $0$
$2$ $4$ $(1,3,5,6)(2,7,4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.