Properties

Label 2.5_61.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$305= 5 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 18 x^{6} - 34 x^{5} + 83 x^{4} - 62 x^{3} - 19 x^{2} + 15 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 16\cdot 149 + 125\cdot 149^{2} + 121\cdot 149^{3} + 56\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 42\cdot 149 + 142\cdot 149^{2} + 31\cdot 149^{3} + 17\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 107\cdot 149 + 36\cdot 149^{2} + 45\cdot 149^{3} + 10\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 11\cdot 149 + 110\cdot 149^{2} + 112\cdot 149^{3} + 130\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 111 + 78\cdot 149 + 69\cdot 149^{2} + 31\cdot 149^{3} + 93\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 113 + 131\cdot 149 + 142\cdot 149^{2} + 98\cdot 149^{3} + 64\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 122 + 134\cdot 149 + 66\cdot 149^{2} + 45\cdot 149^{3} + 43\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 136 + 72\cdot 149 + 51\cdot 149^{2} + 108\cdot 149^{3} + 30\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,4,2,5)(3,7,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)(7,8)$$-2$
$2$$2$$(1,3)(2,6)(4,8)(5,7)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$4$$(1,4,2,5)(3,7,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.