Properties

Label 2.5_59.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 5 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$295= 5 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 5 x^{6} - x^{5} + 11 x^{4} - 25 x^{3} + 14 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.5_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 140\cdot 311 + 264\cdot 311^{2} + 292\cdot 311^{3} + 264\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 75\cdot 311 + 126\cdot 311^{2} + 139\cdot 311^{3} + 262\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 98 + 148\cdot 311 + 189\cdot 311^{2} + 254\cdot 311^{3} + 25\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 100 + 16\cdot 311 + 90\cdot 311^{2} + 77\cdot 311^{3} + 185\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 212 + 294\cdot 311 + 220\cdot 311^{2} + 233\cdot 311^{3} + 125\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 214 + 162\cdot 311 + 121\cdot 311^{2} + 56\cdot 311^{3} + 285\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 298 + 235\cdot 311 + 184\cdot 311^{2} + 171\cdot 311^{3} + 48\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 309 + 170\cdot 311 + 46\cdot 311^{2} + 18\cdot 311^{3} + 46\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,3)(4,5)(6,7)$
$(1,3,5,7,8,6,4,2)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,3)(4,5)(6,7)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,4,3,8,2,5,6)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.