Properties

Label 2.5_59.8t6.1c2
Dimension 2
Group $D_{8}$
Conductor $ 5 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$295= 5 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 7 x^{6} - 10 x^{5} + 7 x^{4} + x^{3} - 9 x^{2} + 8 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.5_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 58\cdot 311 + 147\cdot 311^{2} + 199\cdot 311^{3} + 12\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 215\cdot 311 + 199\cdot 311^{2} + 159\cdot 311^{3} + 9\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 117 + 310\cdot 311 + 110\cdot 311^{2} + 137\cdot 311^{3} + 246\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 161 + 33\cdot 311 + 154\cdot 311^{2} + 180\cdot 311^{3} + 156\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 170 + 290\cdot 311 + 105\cdot 311^{2} + 43\cdot 311^{3} + 186\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 181 + 225\cdot 311 + 278\cdot 311^{2} + 200\cdot 311^{3} + 183\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 256 + 41\cdot 311 + 79\cdot 311^{2} + 142\cdot 311^{3} + 228\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 264 + 68\cdot 311 + 168\cdot 311^{2} + 180\cdot 311^{3} + 220\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,7,3,4)(2,6,8,5)$
$(1,2,4,5,3,8,7,6)$
$(1,5)(2,4)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,8)(4,7)(5,6)$$-2$
$4$$2$$(1,5)(2,4)(3,6)(7,8)$$0$
$4$$2$$(1,4)(3,7)(5,6)$$0$
$2$$4$$(1,7,3,4)(2,6,8,5)$$0$
$2$$8$$(1,6,7,8,3,5,4,2)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,8,4,6,3,2,7,5)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.