Properties

Label 2.5_59.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$295= 5 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} + 53 x^{4} + 80 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 26\cdot 79 + 54\cdot 79^{2} + 34\cdot 79^{3} + 70\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 54\cdot 79 + 37\cdot 79^{2} + 73\cdot 79^{3} + 19\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 + 34\cdot 79 + 64\cdot 79^{2} + 74\cdot 79^{3} + 41\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 5\cdot 79 + 57\cdot 79^{2} + 16\cdot 79^{3} + 61\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 73\cdot 79 + 21\cdot 79^{2} + 62\cdot 79^{3} + 17\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 + 44\cdot 79 + 14\cdot 79^{2} + 4\cdot 79^{3} + 37\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 75 + 24\cdot 79 + 41\cdot 79^{2} + 5\cdot 79^{3} + 59\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 78 + 52\cdot 79 + 24\cdot 79^{2} + 44\cdot 79^{3} + 8\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.