Properties

Label 2.5_569.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 569 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2845= 5 \cdot 569 $
Artin number field: Splitting field of $f= x^{8} + 44 x^{6} + 564 x^{4} - 1085 x^{2} + 1600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_569.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 33\cdot 41^{2} + 38\cdot 41^{3} + 26\cdot 41^{4} + 6\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 38\cdot 41 + 5\cdot 41^{2} + 9\cdot 41^{3} + 8\cdot 41^{4} + 10\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 40\cdot 41 + 36\cdot 41^{2} + 10\cdot 41^{3} + 17\cdot 41^{4} + 26\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 + 37\cdot 41 + 9\cdot 41^{2} + 22\cdot 41^{3} + 39\cdot 41^{4} + 29\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 21 + 3\cdot 41 + 31\cdot 41^{2} + 18\cdot 41^{3} + 41^{4} + 11\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 26 + 4\cdot 41^{2} + 30\cdot 41^{3} + 23\cdot 41^{4} + 14\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 28 + 2\cdot 41 + 35\cdot 41^{2} + 31\cdot 41^{3} + 32\cdot 41^{4} + 30\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 33 + 40\cdot 41 + 7\cdot 41^{2} + 2\cdot 41^{3} + 14\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$2$$4$$(1,7,4,6)(2,5,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.