Properties

Label 2.5_449.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 449 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2245= 5 \cdot 449 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 48 x^{6} - 94 x^{5} + 512 x^{4} - 456 x^{3} - 95 x^{2} + 86 x + 44 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 16 + 84\cdot 89 + 82\cdot 89^{2} + 26\cdot 89^{3} + 32\cdot 89^{4} + 41\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 23 + 22\cdot 89 + 22\cdot 89^{2} + 7\cdot 89^{3} + 56\cdot 89^{4} + 31\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 + 77\cdot 89 + 64\cdot 89^{2} + 10\cdot 89^{3} + 30\cdot 89^{4} + 41\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 43 + 11\cdot 89 + 73\cdot 89^{2} + 88\cdot 89^{3} + 61\cdot 89^{4} + 82\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 56 + 2\cdot 89 + 43\cdot 89^{2} + 16\cdot 89^{3} + 30\cdot 89^{4} + 35\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 57 + 52\cdot 89 + 39\cdot 89^{2} + 65\cdot 89^{3} + 29\cdot 89^{4} + 28\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 64 + 79\cdot 89 + 67\cdot 89^{2} + 45\cdot 89^{3} + 53\cdot 89^{4} + 18\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 69 + 25\cdot 89 + 51\cdot 89^{2} + 5\cdot 89^{3} + 62\cdot 89^{4} + 76\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,8)(6,7)$
$(1,3)(2,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $4$ $(1,4,7,5)(2,3,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.