Properties

Label 2.5_439_2411.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 439 \cdot 2411 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$5292145= 5 \cdot 439 \cdot 2411 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 528 x^{2} + 396 x + 65921 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_439_2411.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 8 + 10\cdot 59 + 38\cdot 59^{2} + 35\cdot 59^{3} + 4\cdot 59^{4} + 47\cdot 59^{5} + 33\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 13 + 35\cdot 59 + 38\cdot 59^{2} + 42\cdot 59^{3} + 59^{4} + 57\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 18 + 43\cdot 59 + 46\cdot 59^{2} + 9\cdot 59^{3} + 32\cdot 59^{4} + 4\cdot 59^{5} + 48\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 21 + 29\cdot 59 + 53\cdot 59^{2} + 29\cdot 59^{3} + 20\cdot 59^{4} + 7\cdot 59^{5} + 38\cdot 59^{6} +O\left(59^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.