Properties

Label 2.5_431.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 431 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2155= 5 \cdot 431 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 244 x^{4} + 2635 x^{2} + 14400 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_431.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 29 + 29^{2} + 9\cdot 29^{3} + 22\cdot 29^{4} + 22\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 8\cdot 29 + 13\cdot 29^{2} + 24\cdot 29^{3} + 14\cdot 29^{4} + 15\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 + 7\cdot 29 + 6\cdot 29^{2} + 6\cdot 29^{3} + 13\cdot 29^{4} + 10\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 + 16\cdot 29 + 10\cdot 29^{2} + 7\cdot 29^{3} + 23\cdot 29^{4} + 25\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 + 12\cdot 29 + 18\cdot 29^{2} + 21\cdot 29^{3} + 5\cdot 29^{4} + 3\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 + 21\cdot 29 + 22\cdot 29^{2} + 22\cdot 29^{3} + 15\cdot 29^{4} + 18\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 22 + 20\cdot 29 + 15\cdot 29^{2} + 4\cdot 29^{3} + 14\cdot 29^{4} + 13\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 28 + 25\cdot 29 + 27\cdot 29^{2} + 19\cdot 29^{3} + 6\cdot 29^{4} + 6\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$4$$(1,7,5,6)(2,4,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.