Properties

Label 2.5_4241.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 4241 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$21205= 5 \cdot 4241 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 34 x^{2} - 5 x + 275 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_4241.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 14\cdot 19 + 13\cdot 19^{2} + 19^{3} + 11\cdot 19^{4} + 13\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 + 12\cdot 19 + 2\cdot 19^{2} + 17\cdot 19^{3} + 12\cdot 19^{4} + 12\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 2\cdot 19 + 14\cdot 19^{2} + 2\cdot 19^{3} + 11\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 8\cdot 19 + 7\cdot 19^{2} + 16\cdot 19^{3} + 13\cdot 19^{4} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.