Properties

Label 2.5_4241.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 4241 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$21205= 5 \cdot 4241 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 70 x^{2} - 69 x + 130 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_4241.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 3 + 20\cdot 29 + 21\cdot 29^{2} + 24\cdot 29^{3} + 13\cdot 29^{4} + 24\cdot 29^{5} + 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 + 6\cdot 29 + 9\cdot 29^{2} + 6\cdot 29^{3} + 20\cdot 29^{4} + 25\cdot 29^{5} + 14\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 26 + 22\cdot 29 + 19\cdot 29^{2} + 22\cdot 29^{3} + 8\cdot 29^{4} + 3\cdot 29^{5} + 14\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 27 + 8\cdot 29 + 7\cdot 29^{2} + 4\cdot 29^{3} + 15\cdot 29^{4} + 4\cdot 29^{5} + 27\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.