Properties

Label 2.5_421.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 421 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2105= 5 \cdot 421 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 44 x^{6} - 118 x^{5} + 551 x^{4} - 910 x^{3} - 244 x^{2} + 680 x + 880 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 2\cdot 79 + 57\cdot 79^{2} + 37\cdot 79^{3} + 23\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 59\cdot 79 + 56\cdot 79^{2} + 14\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 67\cdot 79 + 68\cdot 79^{2} + 54\cdot 79^{3} + 38\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 49\cdot 79 + 24\cdot 79^{2} + 28\cdot 79^{3} + 58\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 29\cdot 79 + 54\cdot 79^{2} + 50\cdot 79^{3} + 20\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 11\cdot 79 + 10\cdot 79^{2} + 24\cdot 79^{3} + 40\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 68 + 19\cdot 79 + 22\cdot 79^{2} + 64\cdot 79^{3} + 3\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 75 + 76\cdot 79 + 21\cdot 79^{2} + 41\cdot 79^{3} + 55\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.