Properties

Label 2.5_41_59.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 41 \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$12095= 5 \cdot 41 \cdot 59 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 9 x^{2} + 25 x - 155 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 55\cdot 89 + 71\cdot 89^{2} + 7\cdot 89^{3} + 88\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 26\cdot 89 + 43\cdot 89^{2} + 10\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 19\cdot 89 + 79\cdot 89^{2} + 64\cdot 89^{3} + 86\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 76\cdot 89 + 72\cdot 89^{2} + 5\cdot 89^{3} + 88\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.