Properties

Label 2.5_41_59.4t3.18c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 41 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$12095= 5 \cdot 41 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} + 32 x^{6} + 1686 x^{4} + 34975 x^{2} + 511225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_41_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 60\cdot 89 + 60\cdot 89^{2} + 2\cdot 89^{3} + 5\cdot 89^{4} + 21\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 57\cdot 89 + 82\cdot 89^{2} + 29\cdot 89^{3} + 89^{4} + 37\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 26 + 82\cdot 89 + 35\cdot 89^{2} + 54\cdot 89^{3} + 82\cdot 89^{4} + 5\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 44 + 67\cdot 89 + 87\cdot 89^{2} + 89^{3} + 25\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 45 + 21\cdot 89 + 89^{2} + 87\cdot 89^{3} + 88\cdot 89^{4} + 63\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 63 + 6\cdot 89 + 53\cdot 89^{2} + 34\cdot 89^{3} + 6\cdot 89^{4} + 83\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 72 + 31\cdot 89 + 6\cdot 89^{2} + 59\cdot 89^{3} + 87\cdot 89^{4} + 51\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 87 + 28\cdot 89 + 28\cdot 89^{2} + 86\cdot 89^{3} + 83\cdot 89^{4} + 67\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$2$$4$$(1,3,2,4)(5,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.