Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 38\cdot 59 + 6\cdot 59^{2} + 7\cdot 59^{3} + 17\cdot 59^{4} + 51\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 21\cdot 59 + 6\cdot 59^{2} + 55\cdot 59^{3} + 31\cdot 59^{4} + 43\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 49 + 37\cdot 59 + 52\cdot 59^{2} + 3\cdot 59^{3} + 27\cdot 59^{4} + 15\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 56 + 20\cdot 59 + 52\cdot 59^{2} + 51\cdot 59^{3} + 41\cdot 59^{4} + 7\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.