Properties

Label 2.5_3881.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 3881 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$19405= 5 \cdot 3881 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 62 x^{2} + 63 x + 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_3881.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 38\cdot 59 + 6\cdot 59^{2} + 7\cdot 59^{3} + 17\cdot 59^{4} + 51\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 21\cdot 59 + 6\cdot 59^{2} + 55\cdot 59^{3} + 31\cdot 59^{4} + 43\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 + 37\cdot 59 + 52\cdot 59^{2} + 3\cdot 59^{3} + 27\cdot 59^{4} + 15\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 56 + 20\cdot 59 + 52\cdot 59^{2} + 51\cdot 59^{3} + 41\cdot 59^{4} + 7\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.