Properties

Label 2.5_349.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 349 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1745= 5 \cdot 349 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 42 x^{6} + 86 x^{5} + 317 x^{4} - 386 x^{3} - 175 x^{2} + 201 x - 31 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 32 + 107\cdot 181^{2} + 8\cdot 181^{3} + 117\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 156\cdot 181 + 155\cdot 181^{2} + 117\cdot 181^{3} + 118\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 155\cdot 181 + 139\cdot 181^{2} + 51\cdot 181^{3} + 77\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 81 + 145\cdot 181 + 141\cdot 181^{2} + 116\cdot 181^{3} + 8\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 114 + 102\cdot 181 + 107\cdot 181^{2} + 47\cdot 181^{3} + 23\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 138\cdot 181 + 137\cdot 181^{2} + 79\cdot 181^{3} + 30\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 136 + 113\cdot 181 + 5\cdot 181^{2} + 8\cdot 181^{3} + 32\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 140 + 92\cdot 181 + 109\cdot 181^{2} + 112\cdot 181^{3} + 135\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,8)(2,5,6,4)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$
$2$ $4$ $(1,3,7,8)(2,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.