Properties

Label 2.5_331.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 331 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1655= 5 \cdot 331 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 8 x^{6} - 14 x^{5} + 277 x^{4} - 696 x^{3} + 1535 x^{2} - 1109 x + 7739 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17\cdot 71 + 70\cdot 71^{2} + 2\cdot 71^{3} + 36\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 65\cdot 71 + 63\cdot 71^{2} + 12\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 31\cdot 71 + 20\cdot 71^{2} + 65\cdot 71^{3} + 68\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 42\cdot 71 + 51\cdot 71^{2} + 54\cdot 71^{3} + 59\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 9\cdot 71 + 5\cdot 71^{2} + 46\cdot 71^{3} + 8\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 + 3\cdot 71 + 6\cdot 71^{2} + 9\cdot 71^{3} + 38\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 15\cdot 71 + 8\cdot 71^{2} + 32\cdot 71^{3} + 35\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 63 + 28\cdot 71 + 58\cdot 71^{2} + 60\cdot 71^{3} + 61\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,3)(4,5,6,7)$
$(1,4)(2,7)(3,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,6)(3,4)(5,8)$ $0$
$2$ $4$ $(1,2,8,3)(4,5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.