Properties

Label 2.5_31_41.4t3.17c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 31 \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6355= 5 \cdot 31 \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 24 x^{6} + 804 x^{4} - 1565 x^{2} + 108900 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_31_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 19\cdot 59 + 22\cdot 59^{2} + 7\cdot 59^{3} + 59^{4} + 48\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 36\cdot 59 + 37\cdot 59^{2} + 58\cdot 59^{3} + 25\cdot 59^{4} + 39\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 30\cdot 59 + 29\cdot 59^{2} + 34\cdot 59^{3} + 45\cdot 59^{4} + 3\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 47\cdot 59 + 44\cdot 59^{2} + 26\cdot 59^{3} + 11\cdot 59^{4} + 54\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 44 + 11\cdot 59 + 14\cdot 59^{2} + 32\cdot 59^{3} + 47\cdot 59^{4} + 4\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 49 + 28\cdot 59 + 29\cdot 59^{2} + 24\cdot 59^{3} + 13\cdot 59^{4} + 55\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 52 + 22\cdot 59 + 21\cdot 59^{2} + 33\cdot 59^{4} + 19\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 57 + 39\cdot 59 + 36\cdot 59^{2} + 51\cdot 59^{3} + 57\cdot 59^{4} + 10\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,4)(2,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.