Properties

Label 2.5_311.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 311 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1555= 5 \cdot 311 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 179 x^{4} - 346 x^{3} + 1898 x^{2} - 1726 x + 7699 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 225\cdot 389 + 388\cdot 389^{2} + 271\cdot 389^{3} + 72\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 110 + 295\cdot 389 + 149\cdot 389^{2} + 111\cdot 389^{3} + 251\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 125 + 380\cdot 389 + 22\cdot 389^{2} + 183\cdot 389^{3} + 122\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 179 + 327\cdot 389 + 215\cdot 389^{2} + 366\cdot 389^{3} + 87\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 211 + 61\cdot 389 + 173\cdot 389^{2} + 22\cdot 389^{3} + 301\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 265 + 8\cdot 389 + 366\cdot 389^{2} + 205\cdot 389^{3} + 266\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 280 + 93\cdot 389 + 239\cdot 389^{2} + 277\cdot 389^{3} + 137\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 366 + 163\cdot 389 + 117\cdot 389^{3} + 316\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,7,6)(2,3,8,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.