Properties

Label 2.5_311.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 311 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1555= 5 \cdot 311 $
Artin number field: Splitting field of $f= x^{4} + 3 x^{2} + 80 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_311.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 27 + 168\cdot 389 + 96\cdot 389^{2} + 286\cdot 389^{3} + 371\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 128 + 323\cdot 389 + 119\cdot 389^{2} + 197\cdot 389^{3} + 32\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 261 + 65\cdot 389 + 269\cdot 389^{2} + 191\cdot 389^{3} + 356\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 362 + 220\cdot 389 + 292\cdot 389^{2} + 102\cdot 389^{3} + 17\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.