Properties

Label 2.5_29e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4205= 5 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 26 x^{5} + 94 x^{4} - 212 x^{3} + 761 x^{2} - 700 x + 980 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 59\cdot 71 + 23\cdot 71^{2} + 17\cdot 71^{3} + 44\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 52\cdot 71 + 3\cdot 71^{2} + 34\cdot 71^{3} + 29\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 38\cdot 71 + 50\cdot 71^{2} + 31\cdot 71^{3} + 61\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 31\cdot 71 + 30\cdot 71^{2} + 48\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 27\cdot 71 + 37\cdot 71^{2} + 38\cdot 71^{3} + 55\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 6\cdot 71 + 64\cdot 71^{2} + 52\cdot 71^{3} + 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 52 + 44\cdot 71 + 23\cdot 71^{2} + 23\cdot 71^{3} + 49\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 69 + 23\cdot 71 + 50\cdot 71^{2} + 37\cdot 71^{3} + 66\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,7)(3,6,4,8)$
$(1,2)(3,4)(5,7)(6,8)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-2$
$2$$2$$(1,3)(2,4)(5,8)(6,7)$$0$
$2$$2$$(1,6)(2,8)(3,5)(4,7)$$0$
$2$$4$$(1,5,2,7)(3,6,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.