Properties

Label 2.5_29e2.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$4205= 5 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 4 x^{2} + 9 x + 23 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 71 + 34\cdot 71^{2} + 40\cdot 71^{3} + 48\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 18\cdot 71 + 20\cdot 71^{2} + 25\cdot 71^{3} + 42\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 64\cdot 71 + 53\cdot 71^{2} + 29\cdot 71^{3} + 68\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 57\cdot 71 + 33\cdot 71^{2} + 46\cdot 71^{3} + 53\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.