Properties

Label 2.5_29.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$145= 5 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 12 x^{6} + 26 x^{5} + 17 x^{4} - 36 x^{3} - 5 x^{2} + 11 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 70\cdot 109 + 107\cdot 109^{2} + 49\cdot 109^{3} + 21\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 13\cdot 109 + 104\cdot 109^{2} + 100\cdot 109^{3} + 59\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 12\cdot 109 + 102\cdot 109^{2} + 5\cdot 109^{3} + 30\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 + 97\cdot 109 + 38\cdot 109^{2} + 15\cdot 109^{3} + 7\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 36\cdot 109 + 29\cdot 109^{2} + 94\cdot 109^{3} + 15\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 98\cdot 109 + 85\cdot 109^{2} + 81\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 55 + 13\cdot 109 + 13\cdot 109^{2} + 61\cdot 109^{3} + 106\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 75 + 94\cdot 109 + 63\cdot 109^{2} + 26\cdot 109^{3} + 74\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,4)(2,8)(3,5)(6,7)$
$(1,3,2,7)(4,6,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-2$
$2$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$
$2$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $0$
$2$ $4$ $(1,3,2,7)(4,6,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.