Properties

Label 2.5_281.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 281 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1405= 5 \cdot 281 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 38 x^{6} - 74 x^{5} + 328 x^{4} - 282 x^{3} - 79 x^{2} + 70 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_281.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 156\cdot 211 + 83\cdot 211^{2} + 64\cdot 211^{3} + 129\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 71 + 160\cdot 211 + 70\cdot 211^{2} + 100\cdot 211^{3} + 147\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 81 + 52\cdot 211 + 204\cdot 211^{2} + 9\cdot 211^{3} + 68\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 108 + 115\cdot 211 + 156\cdot 211^{2} + 126\cdot 211^{3} + 112\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 163 + 93\cdot 211 + 201\cdot 211^{2} + 184\cdot 211^{3} + 93\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 186 + 184\cdot 211 + 134\cdot 211^{2} + 19\cdot 211^{3} + 205\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 199 + 200\cdot 211 + 110\cdot 211^{2} + 130\cdot 211^{3} + 32\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 204 + 90\cdot 211 + 92\cdot 211^{2} + 207\cdot 211^{3} + 54\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,6)(5,7)$
$(1,2)(3,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,4)(3,5)(6,8)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,3)(2,8)(4,6)(5,7)$$0$
$2$$4$$(1,8,7,6)(2,3,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.