Properties

Label 2.5_251.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 251 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1255= 5 \cdot 251 $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} + 197 x^{4} + 320 x^{2} + 4096 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 5 + 12\cdot 41 + 17\cdot 41^{2} + 29\cdot 41^{3} + 23\cdot 41^{4} + 7\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 10\cdot 41 + 9\cdot 41^{2} + 35\cdot 41^{3} + 31\cdot 41^{4} + 6\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 2\cdot 41 + 35\cdot 41^{2} + 5\cdot 41^{4} + 25\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 + 22\cdot 41 + 32\cdot 41^{2} + 11\cdot 41^{3} + 25\cdot 41^{4} + 16\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 23 + 18\cdot 41 + 8\cdot 41^{2} + 29\cdot 41^{3} + 15\cdot 41^{4} + 24\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 26 + 38\cdot 41 + 5\cdot 41^{2} + 40\cdot 41^{3} + 35\cdot 41^{4} + 15\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 35 + 30\cdot 41 + 31\cdot 41^{2} + 5\cdot 41^{3} + 9\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 36 + 28\cdot 41 + 23\cdot 41^{2} + 11\cdot 41^{3} + 17\cdot 41^{4} + 33\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.