Properties

Label 2.5_239.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 239 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1195= 5 \cdot 239 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} + 178 x^{4} - 482 x^{3} + 481 x^{2} - 180 x + 3600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 22 + 49\cdot 71 + 6\cdot 71^{2} + 5\cdot 71^{3} + 41\cdot 71^{4} + 55\cdot 71^{5} + 48\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 24 + 33\cdot 71 + 46\cdot 71^{2} + 71^{3} + 34\cdot 71^{4} + 33\cdot 71^{5} + 19\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 35 + 21\cdot 71 + 10\cdot 71^{2} + 9\cdot 71^{3} + 10\cdot 71^{4} + 30\cdot 71^{5} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 41 + 67\cdot 71 + 50\cdot 71^{2} + 58\cdot 71^{3} + 56\cdot 71^{4} + 9\cdot 71^{5} + 63\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 45 + 3\cdot 71 + 3\cdot 71^{2} + 69\cdot 71^{3} + 33\cdot 71^{4} + 46\cdot 71^{5} + 29\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 56 + 62\cdot 71 + 37\cdot 71^{2} + 5\cdot 71^{3} + 10\cdot 71^{4} + 43\cdot 71^{5} + 10\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 65 + 22\cdot 71 + 59\cdot 71^{2} + 66\cdot 71^{3} + 66\cdot 71^{4} + 26\cdot 71^{5} + 36\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 69 + 22\cdot 71 + 69\cdot 71^{2} + 67\cdot 71^{3} + 30\cdot 71^{4} + 38\cdot 71^{5} + 4\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,7,6,8)$
$(1,2)(3,8)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$2$ $4$ $(1,3,4,5)(2,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.